Alveolar macrophages from normal subjects lack the NOS-related system y+ for arginine transport.
نویسندگان
چکیده
Systems y+ and y+L represent the main routes for arginine transport in mammalian cells. While system y+ activity is needed for the stimulated NO production in rodent alveolar macrophages (AM), no information is yet available about arginine transport in human AM. We study here arginine influx and genes for arginine transporters in AM from bronchoalveolar lavage of normal subjects. These cells express the y+ -related genes SLC7A1/CAT1 and SLC7A2/CAT2B, as well as the y+L genes SLC7A7/y+LAT1 and SLC7A6/y+LAT2. However, compared with human endothelial cells, AM express much less SLC7A2 mRNA and higher levels of SLC7A7 mRNA. Granulocyte macrophage colony-stimulating factor or IFN-gamma do not change the expression of any transporter gene, while lipopolysaccharide induces SLC7A2/CAT2B. Under all the conditions tested, leucine inhibits most of the arginine transport in the presence of Na+ and N-ethylmaleimide, an inhibitor of system y+, is completely ineffective, indicating that system y+L operates most of the arginine influx. Comparable results are obtained in AM from patients with interstitial lung disease, such as Nonspecific Interstitial Pneumonia (NSIP), although these cells have a higher SLC7A1 and a lower SLC7A7 expression than AM from normal subjects. It is concluded that AM from normal subjects or patients with NSIP lack a functional transport system y+, a situation that may limit arginine availability for NO synthesis. Moreover, since mutations of SLC7A7/y+LAT1 cause Lysinuric Protein Intolerance, a disease often associated with AM impairment and alveolar proteinosis, the high SLC7A7 expression observed in human AM suggests that y+LAT1 activity is important for the function of these cells.
منابع مشابه
L-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophages in vitro.
Unlike murine mononuclear phagocytes, human macrophages do not release high amounts of nitric oxide (NO) in vitro despite the presence of nitric oxide synthase (NOS). To determine whether this limited NO synthesis in vitro is due to limited availability of the NOS substrate L-arginine, and putative NOS inhibiting factors present in foetal serum preparations, both alveolar macrophages (AM) and m...
متن کاملIn Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages
BACKGROUND In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathog...
متن کاملGranulocyte-macrophage colony-stimulating factor increases L-arginine transport through the induction of CAT2 in bone marrow-derived macrophages.
L-arginine transport is crucial for macrophage activation because it supplies substrate for the key enzymes nitric oxide synthase 2 and arginase I. These enzymes participate in classic and alternative activation of macrophages, respectively. Classic activation of macrophages is induced by type I cytokines, and alternative activation is induced by type II cytokines. The granulocyte macrophage co...
متن کاملDiminished L-arginine bioavailability in hypertension.
L-Arginine is the precursor of NO (nitric oxide), a key endogenous mediator involved in endothelium-dependent vascular relaxation and platelet function. Although the concentration of intracellular L-arginine is well above the Km for NO synthesis, in many cells and pathological conditions the transport of L-arginine is essential for NO production (L-arginine paradox). The present study was desig...
متن کاملPulmonary Collectins, Arginases and Inducible NOS Regulate Nitric Oxide-Mediated Antibacterial Defense and Macrophage Polarization
Nitric oxide (NO) is important for combating bacterial infections in the lungs. Levels of NO in the lungs are regulated by L-arginine, arginases (ARG) and NO synthases (NOS). Expression levels of ARG and inducible NOS (iNOS) vary among different types of macrophages (M0, M1, M2). Several events including infection, inflammation and tissue repair/resolution polarize macrophages (M0) into either ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2007